Is quantum mechanics necessary for predicting binding free energy?

J Med Chem. 2008 Jul 24;51(14):4280-8. doi: 10.1021/jm800242q. Epub 2008 Jun 25.

Abstract

To take into account polarization effects, the linear interaction energy model with continuum electrostatic solvation (LIECE) is supplemented by the linear-scaling semiempirical quantum mechanical calculation of the intermolecular electrostatic energy (QMLIECE). QMLIECE and LIECE are compared on three enzymes belonging to different classes: the West Nile virus NS3 serine protease (WNV PR), the aspartic protease of the human immunodeficiency virus (HIV-1 PR), and the human cyclin-dependent kinase 2 (CDK2). QMLIECE is superior for 44 peptidic inhibitors of WNV PR because of the different amount of polarization due to the broad range of formal charges of the inhibitors (from 0 to 3). On the other hand, QMLIECE and LIECE show similar accuracy for 24 peptidic inhibitors of HIV-1 PR (20 neutral and 4 with one formal charge) and for 73 CDK2 inhibitors (all neutral). These results indicate that quantum mechanics is essential when the inhibitor/protein complexes have highly variable charge-charge interactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aspartic Acid Endopeptidases / antagonists & inhibitors
  • Cyclin-Dependent Kinase 2 / antagonists & inhibitors
  • Enzyme Inhibitors / chemistry*
  • HIV-1 / enzymology
  • Humans
  • Quantum Theory*
  • RNA Helicases / antagonists & inhibitors
  • Serine Endopeptidases
  • Static Electricity
  • Viral Nonstructural Proteins / antagonists & inhibitors
  • West Nile virus / enzymology

Substances

  • Enzyme Inhibitors
  • NS3 protein, flavivirus
  • Viral Nonstructural Proteins
  • Cyclin-Dependent Kinase 2
  • Serine Endopeptidases
  • Aspartic Acid Endopeptidases
  • RNA Helicases