BindingDB logo
myBDB logout

Assay Method Information

Assay Name:  Kinase Inhibition Assay
Description:  Measurement of the kinase inhibitory activity of each compound produced in Examples was conducted using the Off-chip Mobility Shift Assay. For this test, a human recombinant VEGF receptor 2 was prepared in a baculovirus expression system. A recombinant protein was expressed as a GST fusion protein by using 790-1356 amino acids of a cytosolic domain in the VEGF receptor 2 (NP 002244.1) and binding a glutathione-S-transferase (GST) to N-terminal thereof. The expressed GST-VEGF receptor 2 fusion protein was purified using glutathione-sepharose chromatography. In addition, the test substance was dissolved in dimethylsulfoxide to prepare a solution at a concentration about 100 times higher than the test concentration. Furthermore, the solution was diluted with an assay buffer (20 mM HEPES, 0.01% Triton X-100 and 2 mM DTT, pH7.5) by 25 times to prepare a 4-time concentrated test substance solution. In the kinase inhibition assay, CSKtide was used as a substrate. In the kinase reaction, 10 mL of 2-time concentrated VEGF receptor 2 kinase solution, 5 mL of 4-time concentrated test substance solution prepared with the assay buffer, and 5 mL of 4-time concentrated substrate/ATP/metal solution were mixed in wells of a polypropylene 384-well plate, and reacted at room temperature for 1 hour (substrate concentration: CSKtide 1000 nM, ATP concentration: 75 μM, Magnesium: 5 mM). One hour after, 60 mL of Termination Buffer (QuickScout Screening Assist MSA) was added so as to terminate the reaction. After that, the substrate peptide and the phosphorylated peptide in the reaction solution were separated by LabChip3000 system (Caliper Life Science), and the both peptides were quantified.
Affinity data for this assay
 

If you find an error in this entry please send us an E-mail
   
    

Home

|

Search

|

Deposit

|

SiteMap

|

About us

|

Email us

|

Info

 
Last update November 1, 2007
©2000 BindingDB. All rights reserved.